Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Token Jumping in minor-closed classes (1706.09608v1)

Published 29 Jun 2017 in cs.CC and cs.DM

Abstract: Given two $k$-independent sets $I$ and $J$ of a graph $G$, one can ask if it is possible to transform the one into the other in such a way that, at any step, we replace one vertex of the current independent set by another while keeping the property of being independent. Deciding this problem, known as the Token Jumping (TJ) reconfiguration problem, is PSPACE-complete even on planar graphs. Ito et al. proved in 2014 that the problem is FPT parameterized by $k$ if the input graph is $K_{3,\ell}$-free. We prove that the result of Ito et al. can be extended to any $K_{\ell,\ell}$-free graphs. In other words, if $G$ is a $K_{\ell,\ell}$-free graph, then it is possible to decide in FPT-time if $I$ can be transformed into $J$. As a by product, the TJ-reconfiguration problem is FPT in many well-known classes of graphs such as any minor-free class.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.