Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Landmark Diffusion Maps (L-dMaps): Accelerated manifold learning out-of-sample extension (1706.09396v1)

Published 28 Jun 2017 in stat.ML and cond-mat.soft

Abstract: Diffusion maps are a nonlinear manifold learning technique based on harmonic analysis of a diffusion process over the data. Out-of-sample extensions with computational complexity $\mathcal{O}(N)$, where $N$ is the number of points comprising the manifold, frustrate applications to online learning applications requiring rapid embedding of high-dimensional data streams. We propose landmark diffusion maps (L-dMaps) to reduce the complexity to $\mathcal{O}(M)$, where $M \ll N$ is the number of landmark points selected using pruned spanning trees or k-medoids. Offering $(N/M)$ speedups in out-of-sample extension, L-dMaps enables the application of diffusion maps to high-volume and/or high-velocity streaming data. We illustrate our approach on three datasets: the Swiss roll, molecular simulations of a C${24}$H${50}$ polymer chain, and biomolecular simulations of alanine dipeptide. We demonstrate up to 50-fold speedups in out-of-sample extension for the molecular systems with less than 4% errors in manifold reconstruction fidelity relative to calculations over the full dataset.

Citations (35)

Summary

We haven't generated a summary for this paper yet.