Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Recovery of Missing Samples Using Sparse Approximation via a Convex Similarity Measure (1706.09395v1)

Published 28 Jun 2017 in stat.ML and cs.LG

Abstract: In this paper, we study the missing sample recovery problem using methods based on sparse approximation. In this regard, we investigate the algorithms used for solving the inverse problem associated with the restoration of missed samples of image signal. This problem is also known as inpainting in the context of image processing and for this purpose, we suggest an iterative sparse recovery algorithm based on constrained $l_1$-norm minimization with a new fidelity metric. The proposed metric called Convex SIMilarity (CSIM) index, is a simplified version of the Structural SIMilarity (SSIM) index, which is convex and error-sensitive. The optimization problem incorporating this criterion, is then solved via Alternating Direction Method of Multipliers (ADMM). Simulation results show the efficiency of the proposed method for missing sample recovery of 1D patch vectors and inpainting of 2D image signals.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.