Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hierarchical Model for Long-term Video Prediction (1706.08665v2)

Published 27 Jun 2017 in cs.CV

Abstract: Video prediction has been an active topic of research in the past few years. Many algorithms focus on pixel-level predictions, which generates results that blur and disintegrate within a few frames. In this project, we use a hierarchical approach for long-term video prediction. We aim at estimating high-level structure in the input frame first, then predict how that structure grows in the future. Finally, we use an image analogy network to recover a realistic image from the predicted structure. Our method is largely adopted from the work by Villegas et al. The method is built with a combination of LSTMs and analogy-based convolutional auto-encoder networks. Additionally, in order to generate more realistic frame predictions, we also adopt adversarial loss. We evaluate our method on the Penn Action dataset, and demonstrate good results on high-level long-term structure prediction.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.