Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Semidefinite Programming and Nash Equilibria in Bimatrix Games (1706.08550v3)

Published 26 Jun 2017 in math.OC, cs.DS, and cs.GT

Abstract: We explore the power of semidefinite programming (SDP) for finding additive $epsilon$-approximate Nash equilibria in bimatrix games. We introduce an SDP relaxation for a quadratic programming formulation of the Nash equilibrium (NE) problem and provide a number of valid inequalities to improve the quality of the relaxation. If a rank-1 solution to this SDP is found, then an exact NE can be recovered. We show that for a strictly competitive game, our SDP is guaranteed to return a rank-1 solution. We propose two algorithms based on iterative linearization of smooth nonconvex objective functions whose global minima by design coincide with rank-1 solutions. Empirically, we demonstrate that these algorithms often recover solutions of rank at most two and $epsilon$ close to zero. Furthermore, we prove that if a rank-2 solution to our SDP is found, then a 5/11-NE can be recovered for any game, or a 1/3-NE for a symmetric game. We then show how our SDP approach can address two (NP-hard) problems of economic interest: finding the maximum welfare achievable under any NE, and testing whether there exists a NE where a particular set of strategies is not played. Finally, we show the connection between our SDP and the first level of the Lasserre/sum of squares hierarchy.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.