Papers
Topics
Authors
Recent
2000 character limit reached

High-dimensional classification by sparse logistic regression (1706.08344v3)

Published 26 Jun 2017 in math.ST, stat.ML, and stat.TH

Abstract: We consider high-dimensional binary classification by sparse logistic regression. We propose a model/feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the non-asymptotic bounds for the resulting misclassification excess risk. The bounds can be reduced under the additional low-noise condition. The proposed complexity penalty is remarkably related to the VC-dimension of a set of sparse linear classifiers. Implementation of any complexity penalty-based criterion, however, requires a combinatorial search over all possible models. To find a model selection procedure computationally feasible for high-dimensional data, we extend the Slope estimator for logistic regression and show that under an additional weighted restricted eigenvalue condition it is rate-optimal in the minimax sense.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.