Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dependability of Sensor Networks for Industrial Prognostics and Health Management (1706.08129v1)

Published 25 Jun 2017 in cs.SE

Abstract: Maintenance is an important activity in industry. It is performed either to revive a machine/component or to prevent it from breaking down. Different strategies have evolved through time, bringing maintenance to its current state: condition-based and predictive maintenances. This evolution was due to the increasing demand of reliability in industry. The key process of condition-based and predictive maintenances is prognostics and health management, and it is a tool to predict the remaining useful life of engineering assets. Nowadays, plants are required to avoid shutdowns while offering safety and reliability. Nevertheless, planning a maintenance activity requires accurate information about the system/component health state. Such information is usually gathered by means of independent sensor nodes. In this study, we consider the case where the nodes are interconnected and form a wireless sensor network. As far as we know, no research work has considered such a case of study for prognostics. Regarding the importance of data accuracy, a good prognostics requires reliable sources of information. This is why, in this paper, we will first discuss the dependability of wireless sensor networks, and then present a state of the art in prognostic and health management activities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.