Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Scalable Multi-Class Gaussian Process Classification using Expectation Propagation (1706.07258v1)

Published 22 Jun 2017 in stat.ML

Abstract: This paper describes an expectation propagation (EP) method for multi-class classification with Gaussian processes that scales well to very large datasets. In such a method the estimate of the log-marginal-likelihood involves a sum across the data instances. This enables efficient training using stochastic gradients and mini-batches. When this type of training is used, the computational cost does not depend on the number of data instances $N$. Furthermore, extra assumptions in the approximate inference process make the memory cost independent of $N$. The consequence is that the proposed EP method can be used on datasets with millions of instances. We compare empirically this method with alternative approaches that approximate the required computations using variational inference. The results show that it performs similar or even better than these techniques, which sometimes give significantly worse predictive distributions in terms of the test log-likelihood. Besides this, the training process of the proposed approach also seems to converge in a smaller number of iterations.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.