Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Continuum Limit of Posteriors in Graph Bayesian Inverse Problems (1706.07193v1)

Published 22 Jun 2017 in math.PR, math.AP, math.SP, math.ST, stat.ML, and stat.TH

Abstract: We consider the problem of recovering a function input of a differential equation formulated on an unknown domain $M$. We assume to have access to a discrete domain $M_n={x_1, \dots, x_n} \subset M$, and to noisy measurements of the output solution at $p\le n$ of those points. We introduce a graph-based Bayesian inverse problem, and show that the graph-posterior measures over functions in $M_n$ converge, in the large $n$ limit, to a posterior over functions in $M$ that solves a Bayesian inverse problem with known domain. The proofs rely on the variational formulation of the Bayesian update, and on a new topology for the study of convergence of measures over functions on point clouds to a measure over functions on the continuum. Our framework, techniques, and results may serve to lay the foundations of robust uncertainty quantification of graph-based tasks in machine learning. The ideas are presented in the concrete setting of recovering the initial condition of the heat equation on an unknown manifold.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.