Papers
Topics
Authors
Recent
2000 character limit reached

Significance of Side Information in the Graph Matching Problem (1706.06936v1)

Published 21 Jun 2017 in cs.SI and physics.soc-ph

Abstract: Percolation based graph matching algorithms rely on the availability of seed vertex pairs as side information to efficiently match users across networks. Although such algorithms work well in practice, there are other types of side information available which are potentially useful to an attacker. In this paper, we consider the problem of matching two correlated graphs when an attacker has access to side information, either in the form of community labels or an imperfect initial matching. In the former case, we propose a naive graph matching algorithm by introducing the community degree vectors which harness the information from community labels in an efficient manner. Furthermore, we analyze a variant of the basic percolation algorithm proposed in literature for graphs with community structure. In the latter case, we propose a novel percolation algorithm with two thresholds which uses an imperfect matching as input to match correlated graphs. We evaluate the proposed algorithms on synthetic as well as real world datasets using various experiments. The experimental results demonstrate the importance of communities as side information especially when the number of seeds is small and the networks are weakly correlated.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.