Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Stance Detection in Turkish Tweets (1706.06894v1)

Published 21 Jun 2017 in cs.CL

Abstract: Stance detection is a classification problem in natural language processing where for a text and target pair, a class result from the set {Favor, Against, Neither} is expected. It is similar to the sentiment analysis problem but instead of the sentiment of the text author, the stance expressed for a particular target is investigated in stance detection. In this paper, we present a stance detection tweet data set for Turkish comprising stance annotations of these tweets for two popular sports clubs as targets. Additionally, we provide the evaluation results of SVM classifiers for each target on this data set, where the classifiers use unigram, bigram, and hashtag features. This study is significant as it presents one of the initial stance detection data sets proposed so far and the first one for Turkish language, to the best of our knowledge. The data set and the evaluation results of the corresponding SVM-based approaches will form plausible baselines for the comparison of future studies on stance detection.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)