Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A giant with feet of clay: on the validity of the data that feed machine learning in medicine (1706.06838v3)

Published 21 Jun 2017 in cs.LG and stat.ML

Abstract: This paper considers the use of Machine Learning (ML) in medicine by focusing on the main problem that this computational approach has been aimed at solving or at least minimizing: uncertainty. To this aim, we point out how uncertainty is so ingrained in medicine that it biases also the representation of clinical phenomena, that is the very input of ML models, thus undermining the clinical significance of their output. Recognizing this can motivate both medical doctors, in taking more responsibility in the development and use of these decision aids, and the researchers, in pursuing different ways to assess the value of these systems. In so doing, both designers and users could take this intrinsic characteristic of medicine more seriously and consider alternative approaches that do not "sweep uncertainty under the rug" within an objectivist fiction, which everyone can come up by believing as true.

Citations (53)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.