Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Frank-Wolfe Optimization for Symmetric-NMF under Simplicial Constraint (1706.06348v3)

Published 20 Jun 2017 in cs.LG, math.OC, and stat.ML

Abstract: Symmetric nonnegative matrix factorization has found abundant applications in various domains by providing a symmetric low-rank decomposition of nonnegative matrices. In this paper we propose a Frank-Wolfe (FW) solver to optimize the symmetric nonnegative matrix factorization problem under a simplicial constraint, which has recently been proposed for probabilistic clustering. Compared with existing solutions, this algorithm is simple to implement, and has no hyperparameters to be tuned. Building on the recent advances of FW algorithms in nonconvex optimization, we prove an $O(1/\varepsilon2)$ convergence rate to $\varepsilon$-approximate KKT points, via a tight bound $\Theta(n2)$ on the curvature constant, which matches the best known result in unconstrained nonconvex setting using gradient methods. Numerical results demonstrate the effectiveness of our algorithm. As a side contribution, we construct a simple nonsmooth convex problem where the FW algorithm fails to converge to the optimum. This result raises an interesting question about necessary conditions of the success of the FW algorithm on convex problems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)