Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

An a Priori Exponential Tail Bound for k-Folds Cross-Validation (1706.05801v1)

Published 19 Jun 2017 in stat.ML and cs.LG

Abstract: We consider a priori generalization bounds developed in terms of cross-validation estimates and the stability of learners. In particular, we first derive an exponential Efron-Stein type tail inequality for the concentration of a general function of n independent random variables. Next, under some reasonable notion of stability, we use this exponential tail bound to analyze the concentration of the k-fold cross-validation (KFCV) estimate around the true risk of a hypothesis generated by a general learning rule. While the accumulated literature has often attributed this concentration to the bias and variance of the estimator, our bound attributes this concentration to the stability of the learning rule and the number of folds k. This insight raises valid concerns related to the practical use of KFCV and suggests research directions to obtain reliable empirical estimates of the actual risk.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.