Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

A framework for Multi-A(rmed)/B(andit) testing with online FDR control (1706.05378v2)

Published 16 Jun 2017 in stat.ML, cs.LG, and stat.ME

Abstract: We propose an alternative framework to existing setups for controlling false alarms when multiple A/B tests are run over time. This setup arises in many practical applications, e.g. when pharmaceutical companies test new treatment options against control pills for different diseases, or when internet companies test their default webpages versus various alternatives over time. Our framework proposes to replace a sequence of A/B tests by a sequence of best-arm MAB instances, which can be continuously monitored by the data scientist. When interleaving the MAB tests with an an online false discovery rate (FDR) algorithm, we can obtain the best of both worlds: low sample complexity and any time online FDR control. Our main contributions are: (i) to propose reasonable definitions of a null hypothesis for MAB instances; (ii) to demonstrate how one can derive an always-valid sequential p-value that allows continuous monitoring of each MAB test; and (iii) to show that using rejection thresholds of online-FDR algorithms as the confidence levels for the MAB algorithms results in both sample-optimality, high power and low FDR at any point in time. We run extensive simulations to verify our claims, and also report results on real data collected from the New Yorker Cartoon Caption contest.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.