Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DSRIM: A Deep Neural Information Retrieval Model Enhanced by a Knowledge Resource Driven Representation of Documents (1706.04922v2)

Published 15 Jun 2017 in cs.IR and cs.CL

Abstract: The state-of-the-art solutions to the vocabulary mismatch in information retrieval (IR) mainly aim at leveraging either the relational semantics provided by external resources or the distributional semantics, recently investigated by deep neural approaches. Guided by the intuition that the relational semantics might improve the effectiveness of deep neural approaches, we propose the Deep Semantic Resource Inference Model (DSRIM) that relies on: 1) a representation of raw-data that models the relational semantics of text by jointly considering objects and relations expressed in a knowledge resource, and 2) an end-to-end neural architecture that learns the query-document relevance by leveraging the distributional and relational semantics of documents and queries. The experimental evaluation carried out on two TREC datasets from TREC Terabyte and TREC CDS tracks relying respectively on WordNet and MeSH resources, indicates that our model outperforms state-of-the-art semantic and deep neural IR models.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.