Finding Dominating Induced Matchings in $(S_{2,2,3})$-Free Graphs in Polynomial Time (1706.04894v5)
Abstract: Let $G=(V,E)$ be a finite undirected graph. An edge set $E' \subseteq E$ is a {\em dominating induced matching} ({\em d.i.m.}) in $G$ if every edge in $E$ is intersected by exactly one edge of $E'$. The \emph{Dominating Induced Matching} (\emph{DIM}) problem asks for the existence of a d.i.m.\ in $G$; this problem is also known as the \emph{Efficient Edge Domination} problem; it is the Efficient Domination problem for line graphs. The DIM problem is \NP-complete even for very restricted graph classes such as planar bipartite graphs with maximum degree 3 and is solvable in linear time for $P_7$-free graphs, and in polynomial time for $S_{1,2,4}$-free graphs as well as for $S_{2,2,2}$-free graphs. In this paper, combining two distinct approaches, we solve it in polynomial time for $S_{2,2,3}$-free graphs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.