Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Provable benefits of representation learning (1706.04601v1)

Published 14 Jun 2017 in cs.LG and stat.ML

Abstract: There is general consensus that learning representations is useful for a variety of reasons, e.g. efficient use of labeled data (semi-supervised learning), transfer learning and understanding hidden structure of data. Popular techniques for representation learning include clustering, manifold learning, kernel-learning, autoencoders, Boltzmann machines, etc. To study the relative merits of these techniques, it's essential to formalize the definition and goals of representation learning, so that they are all become instances of the same definition. This paper introduces such a formal framework that also formalizes the utility of learning the representation. It is related to previous Bayesian notions, but with some new twists. We show the usefulness of our framework by exhibiting simple and natural settings -- linear mixture models and loglinear models, where the power of representation learning can be formally shown. In these examples, representation learning can be performed provably and efficiently under plausible assumptions (despite being NP-hard), and furthermore: (i) it greatly reduces the need for labeled data (semi-supervised learning) and (ii) it allows solving classification tasks when simpler approaches like nearest neighbors require too much data (iii) it is more powerful than manifold learning methods.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.