Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

SideEye: A Generative Neural Network Based Simulator of Human Peripheral Vision (1706.04568v2)

Published 14 Jun 2017 in cs.NE, cs.CV, and q-bio.NC

Abstract: Foveal vision makes up less than 1% of the visual field. The other 99% is peripheral vision. Precisely what human beings see in the periphery is both obvious and mysterious in that we see it with our own eyes but can't visualize what we see, except in controlled lab experiments. Degradation of information in the periphery is far more complex than what might be mimicked with a radial blur. Rather, behaviorally-validated models hypothesize that peripheral vision measures a large number of local texture statistics in pooling regions that overlap and grow with eccentricity. In this work, we develop a new method for peripheral vision simulation by training a generative neural network on a behaviorally-validated full-field synthesis model. By achieving a 21,000 fold reduction in running time, our approach is the first to combine realism and speed of peripheral vision simulation to a degree that provides a whole new way to approach visual design: through peripheral visualization.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.