Block-space GPU Mapping for Embedded Sierpiński Gasket Fractals (1706.04552v1)
Abstract: This work studies the problem of GPU thread mapping for a Sierpi\'nski gasket fractal embedded in a discrete Euclidean space of $n \times n$. A block-space map $\lambda: \mathbb{Z}{\mathbb{E}}{2} \mapsto \mathbb{Z}{\mathbb{F}}{2}$ is proposed, from Euclidean parallel space $\mathbb{E}$ to embedded fractal space $\mathbb{F}$, that maps in $\mathcal{O}(\log_2 \log_2(n))$ time and uses no more than $\mathcal{O}(n\mathbb{H})$ threads with $\mathbb{H} \approx 1.58...$ being the Hausdorff dimension, making it parallel space efficient. When compared to a bounding-box map, $\lambda(\omega)$ offers a sub-exponential improvement in parallel space and a monotonically increasing speedup once $n > n_0$. Experimental performance tests show that in practice $\lambda(\omega)$ can produce performance improvement at any block-size once $n > n_0 = 28$, reaching approximately $10\times$ of speedup for $n=2{16}$ under optimal block configurations.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.