Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Block-space GPU Mapping for Embedded Sierpiński Gasket Fractals (1706.04552v1)

Published 14 Jun 2017 in cs.DC

Abstract: This work studies the problem of GPU thread mapping for a Sierpi\'nski gasket fractal embedded in a discrete Euclidean space of $n \times n$. A block-space map $\lambda: \mathbb{Z}{\mathbb{E}}{2} \mapsto \mathbb{Z}{\mathbb{F}}{2}$ is proposed, from Euclidean parallel space $\mathbb{E}$ to embedded fractal space $\mathbb{F}$, that maps in $\mathcal{O}(\log_2 \log_2(n))$ time and uses no more than $\mathcal{O}(n\mathbb{H})$ threads with $\mathbb{H} \approx 1.58...$ being the Hausdorff dimension, making it parallel space efficient. When compared to a bounding-box map, $\lambda(\omega)$ offers a sub-exponential improvement in parallel space and a monotonically increasing speedup once $n > n_0$. Experimental performance tests show that in practice $\lambda(\omega)$ can produce performance improvement at any block-size once $n > n_0 = 28$, reaching approximately $10\times$ of speedup for $n=2{16}$ under optimal block configurations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.