Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A strong converse bound for multiple hypothesis testing, with applications to high-dimensional estimation (1706.04410v3)

Published 14 Jun 2017 in cs.IT, math.IT, math.ST, stat.ML, and stat.TH

Abstract: In statistical inference problems, we wish to obtain lower bounds on the minimax risk, that is to bound the performance of any possible estimator. A standard technique to obtain risk lower bounds involves the use of Fano's inequality. In an information-theoretic setting, it is known that Fano's inequality typically does not give a sharp converse result (error lower bound) for channel coding problems. Moreover, recent work has shown that an argument based on binary hypothesis testing gives tighter results. We adapt this technique to the statistical setting, and argue that Fano's inequality can always be replaced by this approach to obtain tighter lower bounds that can be easily computed and are asymptotically sharp. We illustrate our technique in three applications: density estimation, active learning of a binary classifier, and compressed sensing, obtaining tighter risk lower bounds in each case.

Citations (4)

Summary

We haven't generated a summary for this paper yet.