Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Online Learning for Structured Loss Spaces (1706.04125v2)

Published 13 Jun 2017 in cs.LG

Abstract: We consider prediction with expert advice when the loss vectors are assumed to lie in a set described by the sum of atomic norm balls. We derive a regret bound for a general version of the online mirror descent (OMD) algorithm that uses a combination of regularizers, each adapted to the constituent atomic norms. The general result recovers standard OMD regret bounds, and yields regret bounds for new structured settings where the loss vectors are (i) noisy versions of points from a low-rank subspace, (ii) sparse vectors corrupted with noise, and (iii) sparse perturbations of low-rank vectors. For the problem of online learning with structured losses, we also show lower bounds on regret in terms of rank and sparsity of the source set of the loss vectors, which implies lower bounds for the above additive loss settings as well.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.