Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SEP-Nets: Small and Effective Pattern Networks (1706.03912v1)

Published 13 Jun 2017 in cs.CV and cs.LG

Abstract: While going deeper has been witnessed to improve the performance of convolutional neural networks (CNN), going smaller for CNN has received increasing attention recently due to its attractiveness for mobile/embedded applications. It remains an active and important topic how to design a small network while retaining the performance of large and deep CNNs (e.g., Inception Nets, ResNets). Albeit there are already intensive studies on compressing the size of CNNs, the considerable drop of performance is still a key concern in many designs. This paper addresses this concern with several new contributions. First, we propose a simple yet powerful method for compressing the size of deep CNNs based on parameter binarization. The striking difference from most previous work on parameter binarization/quantization lies at different treatments of $1\times 1$ convolutions and $k\times k$ convolutions ($k>1$), where we only binarize $k\times k$ convolutions into binary patterns. The resulting networks are referred to as pattern networks. By doing this, we show that previous deep CNNs such as GoogLeNet and Inception-type Nets can be compressed dramatically with marginal drop in performance. Second, in light of the different functionalities of $1\times 1$ (data projection/transformation) and $k\times k$ convolutions (pattern extraction), we propose a new block structure codenamed the pattern residual block that adds transformed feature maps generated by $1\times 1$ convolutions to the pattern feature maps generated by $k\times k$ convolutions, based on which we design a small network with $\sim 1$ million parameters. Combining with our parameter binarization, we achieve better performance on ImageNet than using similar sized networks including recently released Google MobileNets.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube