Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Tackling Over-pruning in Variational Autoencoders (1706.03643v2)

Published 9 Jun 2017 in cs.LG

Abstract: Variational autoencoders (VAE) are directed generative models that learn factorial latent variables. As noted by Burda et al. (2015), these models exhibit the problem of factor over-pruning where a significant number of stochastic factors fail to learn anything and become inactive. This can limit their modeling power and their ability to learn diverse and meaningful latent representations. In this paper, we evaluate several methods to address this problem and propose a more effective model-based approach called the epitomic variational autoencoder (eVAE). The so-called epitomes of this model are groups of mutually exclusive latent factors that compete to explain the data. This approach helps prevent inactive units since each group is pressured to explain the data. We compare the approaches with qualitative and quantitative results on MNIST and TFD datasets. Our results show that eVAE makes efficient use of model capacity and generalizes better than VAE.

Citations (62)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.