Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning to Learn from Noisy Web Videos (1706.02884v1)

Published 9 Jun 2017 in cs.CV

Abstract: Understanding the simultaneously very diverse and intricately fine-grained set of possible human actions is a critical open problem in computer vision. Manually labeling training videos is feasible for some action classes but doesn't scale to the full long-tailed distribution of actions. A promising way to address this is to leverage noisy data from web queries to learn new actions, using semi-supervised or "webly-supervised" approaches. However, these methods typically do not learn domain-specific knowledge, or rely on iterative hand-tuned data labeling policies. In this work, we instead propose a reinforcement learning-based formulation for selecting the right examples for training a classifier from noisy web search results. Our method uses Q-learning to learn a data labeling policy on a small labeled training dataset, and then uses this to automatically label noisy web data for new visual concepts. Experiments on the challenging Sports-1M action recognition benchmark as well as on additional fine-grained and newly emerging action classes demonstrate that our method is able to learn good labeling policies for noisy data and use this to learn accurate visual concept classifiers.

Citations (31)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.