Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dynamic Discovery of Type Classes and Relations in Semantic Web Data (1706.02591v1)

Published 31 May 2017 in cs.DB and cs.AI

Abstract: The continuing development of Semantic Web technologies and the increasing user adoption in the recent years have accelerated the progress incorporating explicit semantics with data on the Web. With the rapidly growing RDF (Resource Description Framework) data on the Semantic Web, processing large semantic graph data have become more challenging. Constructing a summary graph structure from the raw RDF can help obtain semantic type relations and reduce the computational complexity for graph processing purposes. In this paper, we addressed the problem of graph summarization in RDF graphs, and we proposed an approach for building summary graph structures automatically from RDF graph data. Moreover, we introduced a measure to help discover optimum class dissimilarity thresholds and an effective method to discover the type classes automatically. In future work, we plan to investigate further improvement options on the scalability of the proposed method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.