Unsupervised Place Discovery for Place-Specific Change Classifier (1706.02054v1)
Abstract: In this study, we address the problem of supervised change detection for robotic map learning applications, in which the aim is to train a place-specific change classifier (e.g., support vector machine (SVM)) to predict changes from a robot's view image. An open question is the manner in which to partition a robot's workspace into places (e.g., SVMs) to maximize the overall performance of change classifiers. This is a chicken-or-egg problem: if we have a well-trained change classifier, partitioning the robot's workspace into places is rather easy. However, training a change classifier requires a set of place-specific training data. In this study, we address this novel problem, which we term unsupervised place discovery. In addition, we present a solution powered by convolutional-feature-based visual place recognition, and validate our approach by applying it to two place-specific change classifiers, namely, nuisance and anomaly predictors.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.