Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Clustering Spectrum of scale-free networks (1706.01727v2)

Published 6 Jun 2017 in cs.SI, math.PR, and physics.soc-ph

Abstract: Real-world networks often have power-law degrees and scale-free properties such as ultra-small distances and ultra-fast information spreading. In this paper, we study a third universal property: three-point correlations that suppress the creation of triangles and signal the presence of hierarchy. We quantify this property in terms of $\bar c(k)$, the probability that two neighbors of a degree-$k$ node are neighbors themselves. We investigate how the clustering spectrum $k\mapsto\bar c(k)$ scales with $k$ in the hidden variable model and show that $c(k)$ follows a {\it universal curve} that consists of three $k$-ranges where $\bar c(k)$ remains flat, starts declining, and eventually settles on a power law $\bar c(k)\sim k{-\alpha}$ with $\alpha$ depending on the power law of the degree distribution. We test these results against ten contemporary real-world networks and explain analytically why the universal curve properties only reveal themselves in large networks.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.