Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limitations on Variance-Reduction and Acceleration Schemes for Finite Sum Optimization (1706.01686v2)

Published 6 Jun 2017 in math.OC, cs.LG, and stat.ML

Abstract: We study the conditions under which one is able to efficiently apply variance-reduction and acceleration schemes on finite sum optimization problems. First, we show that, perhaps surprisingly, the finite sum structure by itself, is not sufficient for obtaining a complexity bound of $\tilde{\cO}((n+L/\mu)\ln(1/\epsilon))$ for $L$-smooth and $\mu$-strongly convex individual functions - one must also know which individual function is being referred to by the oracle at each iteration. Next, we show that for a broad class of first-order and coordinate-descent finite sum algorithms (including, e.g., SDCA, SVRG, SAG), it is not possible to get an `accelerated' complexity bound of $\tilde{\cO}((n+\sqrt{n L/\mu})\ln(1/\epsilon))$, unless the strong convexity parameter is given explicitly. Lastly, we show that when this class of algorithms is used for minimizing $L$-smooth and convex finite sums, the optimal complexity bound is $\tilde{\cO}(n+L/\epsilon)$, assuming that (on average) the same update rule is used in every iteration, and $\tilde{\cO}(n+\sqrt{nL/\epsilon})$, otherwise.

Citations (12)

Summary

We haven't generated a summary for this paper yet.