Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Dynamic Bayesian Multitaper Spectral Analysis (1706.01563v2)

Published 5 Jun 2017 in cs.IT and math.IT

Abstract: Spectral analysis using overlapping sliding windows is among the most widely used techniques in analyzing non-stationary time series. Although sliding window analysis is convenient to implement, the resulting estimates are sensitive to the window length and overlap size. In addition, it undermines the dynamics of the time series as the estimate associated to each window uses only the data within. Finally, the overlap between consecutive windows hinders a precise statistical assessment. In this paper, we address these shortcomings by explicitly modeling the spectral dynamics through integrating the multitaper method with state-space models in a Bayesian estimation framework. The underlying states pertaining to the eigen-spectral quantities arising in multitaper analysis are estimated using instances of the Expectation-Maximization algorithm, and are used to construct spectrograms and their respective confidence intervals. We propose two spectral estimators that are robust to noise and are able to capture spectral dynamics at high spectrotemporal resolution. We provide theoretical analysis of the bias-variance trade-off, which establishes performance gains over the standard overlapping multitaper method. We apply our algorithms to synthetic data as well as real data from human EEG and electric network frequency recordings, the results of which validate our theoretical analysis.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube