Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

To Index or Not to Index: Optimizing Exact Maximum Inner Product Search (1706.01449v3)

Published 5 Jun 2017 in cs.IR, cs.DB, cs.DS, and cs.PF

Abstract: Exact Maximum Inner Product Search (MIPS) is an important task that is widely pertinent to recommender systems and high-dimensional similarity search. The brute-force approach to solving exact MIPS is computationally expensive, thus spurring recent development of novel indexes and pruning techniques for this task. In this paper, we show that a hardware-efficient brute-force approach, blocked matrix multiply (BMM), can outperform the state-of-the-art MIPS solvers by over an order of magnitude, for some -- but not all -- inputs. In this paper, we also present a novel MIPS solution, MAXIMUS, that takes advantage of hardware efficiency and pruning of the search space. Like BMM, MAXIMUS is faster than other solvers by up to an order of magnitude, but again only for some inputs. Since no single solution offers the best runtime performance for all inputs, we introduce a new data-dependent optimizer, OPTIMUS, that selects online with minimal overhead the best MIPS solver for a given input. Together, OPTIMUS and MAXIMUS outperform state-of-the-art MIPS solvers by 3.2$\times$ on average, and up to 10.9$\times$, on widely studied MIPS datasets.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.