Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Degree Ranking Using Local Information (1706.01205v2)

Published 5 Jun 2017 in cs.SI

Abstract: Most real world dynamic networks are evolved very fast with time. It is not feasible to collect the entire network at any given time to study its characteristics. This creates the need to propose local algorithms to study various properties of the network. In the present work, we estimate degree rank of a node without having the entire network. The proposed methods are based on the power law degree distribution characteristic or sampling techniques. The proposed methods are simulated on synthetic networks, as well as on real world social networks. The efficiency of the proposed methods is evaluated using absolute and weighted error functions. Results show that the degree rank of a node can be estimated with high accuracy using only $1\%$ samples of the network size. The accuracy of the estimation decreases from high ranked to low ranked nodes. We further extend the proposed methods for random networks and validate their efficiency on synthetic random networks, that are generated using Erd\H{o}s-R\'{e}nyi model. Results show that the proposed methods can be efficiently used for random networks as well.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.