Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

See, Hear, and Read: Deep Aligned Representations (1706.00932v1)

Published 3 Jun 2017 in cs.CV

Abstract: We capitalize on large amounts of readily-available, synchronous data to learn a deep discriminative representations shared across three major natural modalities: vision, sound and language. By leveraging over a year of sound from video and millions of sentences paired with images, we jointly train a deep convolutional network for aligned representation learning. Our experiments suggest that this representation is useful for several tasks, such as cross-modal retrieval or transferring classifiers between modalities. Moreover, although our network is only trained with image+text and image+sound pairs, it can transfer between text and sound as well, a transfer the network never observed during training. Visualizations of our representation reveal many hidden units which automatically emerge to detect concepts, independent of the modality.

Citations (132)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.