Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multiple Kernel Learning and Automatic Subspace Relevance Determination for High-dimensional Neuroimaging Data (1706.00856v1)

Published 2 Jun 2017 in cs.LG, q-bio.NC, and stat.ML

Abstract: Alzheimer's disease is a major cause of dementia. Its diagnosis requires accurate biomarkers that are sensitive to disease stages. In this respect, we regard probabilistic classification as a method of designing a probabilistic biomarker for disease staging. Probabilistic biomarkers naturally support the interpretation of decisions and evaluation of uncertainty associated with them. In this paper, we obtain probabilistic biomarkers via Gaussian Processes. Gaussian Processes enable probabilistic kernel machines that offer flexible means to accomplish Multiple Kernel Learning. Exploiting this flexibility, we propose a new variation of Automatic Relevance Determination and tackle the challenges of high dimensionality through multiple kernels. Our research results demonstrate that the Gaussian Process models are competitive with or better than the well-known Support Vector Machine in terms of classification performance even in the cases of single kernel learning. Extending the basic scheme towards the Multiple Kernel Learning, we improve the efficacy of the Gaussian Process models and their interpretability in terms of the known anatomical correlates of the disease. For instance, the disease pathology starts in and around the hippocampus and entorhinal cortex. Through the use of Gaussian Processes and Multiple Kernel Learning, we have automatically and efficiently determined those portions of neuroimaging data. In addition to their interpretability, our Gaussian Process models are competitive with recent deep learning solutions under similar settings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube