Papers
Topics
Authors
Recent
2000 character limit reached

Hyperparameter Optimization: A Spectral Approach (1706.00764v4)

Published 2 Jun 2017 in cs.LG, cs.AI, math.OC, and stat.ML

Abstract: We give a simple, fast algorithm for hyperparameter optimization inspired by techniques from the analysis of Boolean functions. We focus on the high-dimensional regime where the canonical example is training a neural network with a large number of hyperparameters. The algorithm --- an iterative application of compressed sensing techniques for orthogonal polynomials --- requires only uniform sampling of the hyperparameters and is thus easily parallelizable. Experiments for training deep neural networks on Cifar-10 show that compared to state-of-the-art tools (e.g., Hyperband and Spearmint), our algorithm finds significantly improved solutions, in some cases better than what is attainable by hand-tuning. In terms of overall running time (i.e., time required to sample various settings of hyperparameters plus additional computation time), we are at least an order of magnitude faster than Hyperband and Bayesian Optimization. We also outperform Random Search 8x. Additionally, our method comes with provable guarantees and yields the first improvements on the sample complexity of learning decision trees in over two decades. In particular, we obtain the first quasi-polynomial time algorithm for learning noisy decision trees with polynomial sample complexity.

Citations (115)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.