Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Image Restoration from Patch-based Compressed Sensing Measurement (1706.00597v1)

Published 2 Jun 2017 in cs.CV

Abstract: A series of methods have been proposed to reconstruct an image from compressively sensed random measurement, but most of them have high time complexity and are inappropriate for patch-based compressed sensing capture, because of their serious blocky artifacts in the restoration results. In this paper, we present a non-iterative image reconstruction method from patch-based compressively sensed random measurement. Our method features two cascaded networks based on residual convolution neural network to learn the end-to-end full image restoration, which is capable of reconstructing image patches and removing the blocky effect with low time cost. Experimental results on synthetic and real data show that our method outperforms state-of-the-art compressive sensing (CS) reconstruction methods with patch-based CS measurement. To demonstrate the effectiveness of our method in more general setting, we apply the de-block process in our method to JPEG compression artifacts removal and achieve outstanding performance as well.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube