Papers
Topics
Authors
Recent
2000 character limit reached

Teaching Machines to Describe Images via Natural Language Feedback (1706.00130v2)

Published 1 Jun 2017 in cs.CL, cs.AI, cs.CV, and cs.HC

Abstract: Robots will eventually be part of every household. It is thus critical to enable algorithms to learn from and be guided by non-expert users. In this paper, we bring a human in the loop, and enable a human teacher to give feedback to a learning agent in the form of natural language. We argue that a descriptive sentence can provide a much stronger learning signal than a numeric reward in that it can easily point to where the mistakes are and how to correct them. We focus on the problem of image captioning in which the quality of the output can easily be judged by non-experts. We propose a hierarchical phrase-based captioning model trained with policy gradients, and design a feedback network that provides reward to the learner by conditioning on the human-provided feedback. We show that by exploiting descriptive feedback our model learns to perform better than when given independently written human captions.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.