Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Constraint Solving for Finite Model Finding in SMT Solvers (1706.00096v1)

Published 31 May 2017 in cs.LO

Abstract: SMT solvers have been used successfully as reasoning engines for automated verification and other applications based on automated reasoning. Current techniques for dealing with quantified formulas in SMT are generally incomplete, forcing SMT solvers to report "unknown" when they fail to prove the unsatisfiability of a formula with quantifiers. This inability to return counter-models limits their usefulness in applications that produce queries involving quantified formulas. In this paper, we reduce these limitations by integrating finite model finding techniques based on constraint solving into the architecture used by modern SMT solvers. This approach is made possible by a novel solver for cardinality constraints, as well as techniques for on-demand instantiation of quantified formulas. Experiments show that our approach is competitive with the state of the art in SMT, and orthogonal to approaches in automated theorem proving.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.