The Cop Number of the One-Cop-Moves Game on Planar Graphs (1705.11184v3)
Abstract: Cops and robbers is a vertex-pursuit game played on graphs. In the classical cops-and-robbers game, a set of cops and a robber occupy the vertices of the graph and move alternately along the graph's edges with perfect information about each other's positions. If a cop eventually occupies the same vertex as the robber, then the cops win; the robber wins if she can indefinitely evade capture. Aigner and Frommer established that in every connected planar graph, three cops are sufficient to capture a single robber. In this paper, we consider a recently studied variant of the cops-and-robbers game, alternately called the one-active-cop game, one-cop-moves game or the lazy-cops-and-robbers game, where at most one cop can move during any round. We show that Aigner and Frommer's result does not generalise to this game variant by constructing a connected planar graph on which a robber can indefinitely evade three cops in the one-cop-moves game. This answers a question recently raised by Sullivan, Townsend and Werzanski.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.