Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Information Theoretic Properties of Markov Random Fields, and their Algorithmic Applications (1705.11107v1)

Published 31 May 2017 in cs.LG, cs.DS, cs.IT, math.IT, math.ST, and stat.TH

Abstract: Markov random fields area popular model for high-dimensional probability distributions. Over the years, many mathematical, statistical and algorithmic problems on them have been studied. Until recently, the only known algorithms for provably learning them relied on exhaustive search, correlation decay or various incoherence assumptions. Bresler gave an algorithm for learning general Ising models on bounded degree graphs. His approach was based on a structural result about mutual information in Ising models. Here we take a more conceptual approach to proving lower bounds on the mutual information through setting up an appropriate zero-sum game. Our proof generalizes well beyond Ising models, to arbitrary Markov random fields with higher order interactions. As an application, we obtain algorithms for learning Markov random fields on bounded degree graphs on $n$ nodes with $r$-order interactions in $nr$ time and $\log n$ sample complexity. The sample complexity is information theoretically optimal up to the dependence on the maximum degree. The running time is nearly optimal under standard conjectures about the hardness of learning parity with noise.

Citations (62)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube