Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What to Fix? Distinguishing between design and non-design rules in automated tools (1705.11087v1)

Published 31 May 2017 in cs.SE

Abstract: Technical debt---design shortcuts taken to optimize for delivery speed---is a critical part of long-term software costs. Consequently, automatically detecting technical debt is a high priority for software practitioners. Software quality tool vendors have responded to this need by positioning their tools to detect and manage technical debt. While these tools bundle a number of rules, it is hard for users to understand which rules identify design issues, as opposed to syntactic quality. This is important, since previous studies have revealed the most significant technical debt is related to design issues. Other research has focused on comparing these tools on open source projects, but these comparisons have not looked at whether the rules were relevant to design. We conducted an empirical study using a structured categorization approach, and manually classify 466 software quality rules from three industry tools---CAST, SonarQube, and NDepend. We found that most of these rules were easily labeled as either not design (55%) or design (19%). The remainder (26%) resulted in disagreements among the labelers. Our results are a first step in formalizing a definition of a design rule, in order to support automatic detection.

Citations (9)

Summary

We haven't generated a summary for this paper yet.