Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a Dehn-Sommerville functional for simplicial complexes (1705.10439v1)

Published 30 May 2017 in math.CO and cs.CG

Abstract: Assume G is a finite abstract simplicial complex with f-vector (v0,v1, ...), and generating function f(x) = sum(k=1 v(k-1) xk = v0 x + v1 x2+ v2 x3 + ..., the Euler characteristic of G can be written as chi(G)=f(0)-f(-1). We study here the functional f1'(0)-f1'(-1), where f1' is the derivative of the generating function f1 of G1. The Barycentric refinement G1 of G is the Whitney complex of the finite simple graph for which the faces of G are the vertices and where two faces are connected if one is a subset of the other. Let L is the connection Laplacian of G, which is L=1+A, where A is the adjacency matrix of the connection graph G', which has the same vertex set than G1 but where two faces are connected they intersect. We have f1'(0)=tr(L) and for the Green function g L-1 also f1'(-1)=tr(g) so that eta1(G) = f1'(0)-f1'(-1) is equal to eta(G)=tr(L-L-1. The established formula tr(g)=f1'(-1) for the generating function of G1 complements the determinant expression det(L)=det(g)=zeta(-1) for the Bowen-Lanford zeta function zeta(z)=1/det(1-z A) of the connection graph G' of G. We also establish a Gauss-Bonnet formula eta1(G) = sum(x in V(G1) chi(S(x)), where S(x) is the unit sphere of x the graph generated by all vertices in G1 directly connected to x. Finally, we point out that the functional eta0(G) = sum(x in V(G) chi(S(x)) on graphs takes arbitrary small and arbitrary large values on every homotopy type of graphs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Oliver Knill (113 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.