Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On a Dehn-Sommerville functional for simplicial complexes (1705.10439v1)

Published 30 May 2017 in math.CO and cs.CG

Abstract: Assume G is a finite abstract simplicial complex with f-vector (v0,v1, ...), and generating function f(x) = sum(k=1 v(k-1) xk = v0 x + v1 x2+ v2 x3 + ..., the Euler characteristic of G can be written as chi(G)=f(0)-f(-1). We study here the functional f1'(0)-f1'(-1), where f1' is the derivative of the generating function f1 of G1. The Barycentric refinement G1 of G is the Whitney complex of the finite simple graph for which the faces of G are the vertices and where two faces are connected if one is a subset of the other. Let L is the connection Laplacian of G, which is L=1+A, where A is the adjacency matrix of the connection graph G', which has the same vertex set than G1 but where two faces are connected they intersect. We have f1'(0)=tr(L) and for the Green function g L-1 also f1'(-1)=tr(g) so that eta1(G) = f1'(0)-f1'(-1) is equal to eta(G)=tr(L-L-1. The established formula tr(g)=f1'(-1) for the generating function of G1 complements the determinant expression det(L)=det(g)=zeta(-1) for the Bowen-Lanford zeta function zeta(z)=1/det(1-z A) of the connection graph G' of G. We also establish a Gauss-Bonnet formula eta1(G) = sum(x in V(G1) chi(S(x)), where S(x) is the unit sphere of x the graph generated by all vertices in G1 directly connected to x. Finally, we point out that the functional eta0(G) = sum(x in V(G) chi(S(x)) on graphs takes arbitrary small and arbitrary large values on every homotopy type of graphs.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube