Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DNN-based uncertainty estimation for weighted DNN-HMM ASR (1705.10368v1)

Published 29 May 2017 in cs.SD and cs.NE

Abstract: In this paper, the uncertainty is defined as the mean square error between a given enhanced noisy observation vector and the corresponding clean one. Then, a DNN is trained by using enhanced noisy observation vectors as input and the uncertainty as output with a training database. In testing, the DNN receives an enhanced noisy observation vector and delivers the estimated uncertainty. This uncertainty in employed in combination with a weighted DNN-HMM based speech recognition system and compared with an existing estimation of the noise cancelling uncertainty variance based on an additive noise model. Experiments were carried out with Aurora-4 task. Results with clean, multi-noise and multi-condition training are presented.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.