Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Deterministic Partially Dynamic Single Source Shortest Paths in Weighted Graphs (1705.10097v1)

Published 29 May 2017 in cs.DS

Abstract: In this paper we consider the decremental single-source shortest paths (SSSP) problem, where given a graph $G$ and a source node $s$ the goal is to maintain shortest distances between $s$ and all other nodes in $G$ under a sequence of online adversarial edge deletions. In their seminal work, Even and Shiloach [JACM 1981] presented an exact solution to the problem in unweighted graphs with only $O(mn)$ total update time over all edge deletions. Their classic algorithm was the state of the art for the decremental SSSP problem for three decades, even when approximate shortest paths are allowed. A series of results showed how to improve upon $O(mn)$ if approximation is allowed, culminating in a recent breakthrough of Henzinger, Krinninger and Nanongkai [FOCS 14], who presented a $(1+\epsilon)$-approximate algorithm for undirected weighted graphs whose total update time is near linear: $O(m{1+o(1)}\log(W))$, where $W$ is the ratio of the heaviest to the lightest edge weight in the graph. In this paper they posed as a major open problem the question of derandomizing their result. Until very recently, all known improvements over the Even-Shiloach algorithm were randomized and required the assumption of a non-adaptive adversary. In STOC 2016, Bernstein and Chechik showed the first \emph{deterministic} algorithm to go beyond $O(mn)$ total update time: the algorithm is also $(1+\epsilon)$-approximate, and has total update time $\tilde{O}(n2)$. In SODA 2017, the same authors presented an algorithm with total update time $\tilde{O}(mn{3/4})$. However, both algorithms are restricted to undirected, unweighted graphs. We present the \emph{first} deterministic algorithm for \emph{weighted} undirected graphs to go beyond the $O(mn)$ bound. The total update time is $\tilde{O}(n2 \log(W))$.

Citations (32)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube