Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust Online Matrix Factorization for Dynamic Background Subtraction (1705.10000v1)

Published 28 May 2017 in cs.CV

Abstract: We propose an effective online background subtraction method, which can be robustly applied to practical videos that have variations in both foreground and background. Different from previous methods which often model the foreground as Gaussian or Laplacian distributions, we model the foreground for each frame with a specific mixture of Gaussians (MoG) distribution, which is updated online frame by frame. Particularly, our MoG model in each frame is regularized by the learned foreground/background knowledge in previous frames. This makes our online MoG model highly robust, stable and adaptive to practical foreground and background variations. The proposed model can be formulated as a concise probabilistic MAP model, which can be readily solved by EM algorithm. We further embed an affine transformation operator into the proposed model, which can be automatically adjusted to fit a wide range of video background transformations and make the method more robust to camera movements. With using the sub-sampling technique, the proposed method can be accelerated to execute more than 250 frames per second on average, meeting the requirement of real-time background subtraction for practical video processing tasks. The superiority of the proposed method is substantiated by extensive experiments implemented on synthetic and real videos, as compared with state-of-the-art online and offline background subtraction methods.

Citations (158)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.