Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Unified Optimization Approach for Sparse Tensor Operations on GPUs (1705.09905v1)

Published 28 May 2017 in cs.MS and cs.DC

Abstract: Sparse tensors appear in many large-scale applications with multidimensional and sparse data. While multidimensional sparse data often need to be processed on manycore processors, attempts to develop highly-optimized GPU-based implementations of sparse tensor operations are rare. The irregular computation patterns and sparsity structures as well as the large memory footprints of sparse tensor operations make such implementations challenging. We leverage the fact that sparse tensor operations share similar computation patterns to propose a unified tensor representation called F-COO. Combined with GPU-specific optimizations, F-COO provides highly-optimized implementations of sparse tensor computations on GPUs. The performance of the proposed unified approach is demonstrated for tensor-based kernels such as the Sparse Matricized Tensor- Times-Khatri-Rao Product (SpMTTKRP) and the Sparse Tensor- Times-Matrix Multiply (SpTTM) and is used in tensor decomposition algorithms. Compared to state-of-the-art work we improve the performance of SpTTM and SpMTTKRP up to 3.7 and 30.6 times respectively on NVIDIA Titan-X GPUs. We implement a CANDECOMP/PARAFAC (CP) decomposition and achieve up to 14.9 times speedup using the unified method over state-of-the-art libraries on NVIDIA Titan-X GPUs.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube