Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Projection Theorems of Divergences and Likelihood Maximization Methods (1705.09898v2)

Published 28 May 2017 in cs.IT, math.IT, math.PR, math.ST, and stat.TH

Abstract: Projection theorems of divergences enable us to find reverse projection of a divergence on a specific statistical model as a forward projection of the divergence on a different but rather "simpler" statistical model, which, in turn, results in solving a system of linear equations. Reverse projection of divergences are closely related to various estimation methods such as the maximum likelihood estimation or its variants in robust statistics. We consider projection theorems of three parametric families of divergences that are widely used in robust statistics, namely the R\'enyi divergences (or the Cressie-Reed power divergences), density power divergences, and the relative $\alpha$-entropy (or the logarithmic density power divergences). We explore these projection theorems from the usual likelihood maximization approach and from the principle of sufficiency. In particular, we show the equivalence of solving the estimation problems by the projection theorems of the respective divergences and by directly solving the corresponding estimating equations. We also derive the projection theorem for the density power divergences.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.