Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On shortened and punctured cyclic codes (1705.09859v1)

Published 27 May 2017 in cs.IT and math.IT

Abstract: The problem of identifying whether the family of cyclic codes is asymptotically good or not is a long-standing open problem in the field of coding theory. It is known in the literature that some families of cyclic codes such as BCH codes and Reed-Solomon codes are asymptotically bad, however in general the answer to this question is not known. A recent result by Nelson and Van Zwam shows that, all linear codes can be obtained by a sequence of puncturing and/or shortening of a collection of asymptotically good codes~\cite{Nelson_2015}. In this paper, we prove that any linear code can be obtained by a sequence of puncturing and/or shortening of some cyclic code. Therefore the result that all codes can be obtained by shortening and/or puncturing cyclic codes leaves the possibility open that cyclic codes are asymptotically good.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.