On shortened and punctured cyclic codes (1705.09859v1)
Abstract: The problem of identifying whether the family of cyclic codes is asymptotically good or not is a long-standing open problem in the field of coding theory. It is known in the literature that some families of cyclic codes such as BCH codes and Reed-Solomon codes are asymptotically bad, however in general the answer to this question is not known. A recent result by Nelson and Van Zwam shows that, all linear codes can be obtained by a sequence of puncturing and/or shortening of a collection of asymptotically good codes~\cite{Nelson_2015}. In this paper, we prove that any linear code can be obtained by a sequence of puncturing and/or shortening of some cyclic code. Therefore the result that all codes can be obtained by shortening and/or puncturing cyclic codes leaves the possibility open that cyclic codes are asymptotically good.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.