Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semi-Supervised Model Training for Unbounded Conversational Speech Recognition (1705.09724v1)

Published 26 May 2017 in cs.CL

Abstract: For conversational large-vocabulary continuous speech recognition (LVCSR) tasks, up to about two thousand hours of audio is commonly used to train state of the art models. Collection of labeled conversational audio however, is prohibitively expensive, laborious and error-prone. Furthermore, academic corpora like Fisher English (2004) or Switchboard (1992) are inadequate to train models with sufficient accuracy in the unbounded space of conversational speech. These corpora are also timeworn due to dated acoustic telephony features and the rapid advancement of colloquial vocabulary and idiomatic speech over the last decades. Utilizing the colossal scale of our unlabeled telephony dataset, we propose a technique to construct a modern, high quality conversational speech training corpus on the order of hundreds of millions of utterances (or tens of thousands of hours) for both acoustic and LLM training. We describe the data collection, selection and training, evaluating the results of our updated speech recognition system on a test corpus of 7K manually transcribed utterances. We show relative word error rate (WER) reductions of {35%, 19%} on {agent, caller} utterances over our seed model and 5% absolute WER improvements over IBM Watson STT on this conversational speech task.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.