Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Effective Sampling: Fast Segmentation Using Robust Geometric Model Fitting (1705.09437v1)

Published 26 May 2017 in cs.CV

Abstract: Identifying the underlying models in a set of data points contaminated by noise and outliers, leads to a highly complex multi-model fitting problem. This problem can be posed as a clustering problem by the projection of higher order affinities between data points into a graph, which can then be clustered using spectral clustering. Calculating all possible higher order affinities is computationally expensive. Hence in most cases only a subset is used. In this paper, we propose an effective sampling method to obtain a highly accurate approximation of the full graph required to solve multi-structural model fitting problems in computer vision. The proposed method is based on the observation that the usefulness of a graph for segmentation improves as the distribution of hypotheses (used to build the graph) approaches the distribution of actual parameters for the given data. In this paper, we approximate this actual parameter distribution using a k-th order statistics based cost function and the samples are generated using a greedy algorithm coupled with a data sub-sampling strategy. The experimental analysis shows that the proposed method is both accurate and computationally efficient compared to the state-of-the-art robust multi-model fitting techniques. The code is publicly available from https://github.com/RuwanT/model-fitting-cbs.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com